Academic Course Description

BHARATH UNIVERSITY Faculty of Engineering and Technology Department of Electronics and Communication Engineering

BEC702 Digital CMOS VLSI

Seventh Semester

Course (catalog) description

CMOS is important to learn as it is a basic integrated circuit technology due to its low power (at moderate frequencies), good scalability, and rail-to-rail operation. In this course, the reader is systematically introduced to the entire range of CMOS circuit design, starting with individual CMOS, basic circuit building blocks, and broad view of both combinational and sequential circuits.

Compulsory/Elective course: Compulsory for ECE students

Credit hours : 4 credits

Course Coordinator : Ms.M.Jasmin, Asst. Professor, Department of ECE

Instructor(s) :

Name of the instruction	Class	Office Leasting	Office	Email	Consultation
Name of the instructor	handling	Office location	phone	(domain: @bharathuniv.ac.in)	
Ms.M.Jasmin	IV	SA 006		jasmine.ece	12.30 - 1.30 PM

Relationship to other courses

Pre – requiste : BEC 302- Principles of Digital Electronics

Assume Knowledge : Basic knowledge in Digital System Design and Electronic circuits

Following courses : Nil

Syllabus Contents

UNIT I INTRODUCTION TO MOS TRANSISTOR

12HOURS

MOS Fabrication, Enhancement mode and Depletion mode MOSFET, ,Threshold voltage derivation – body effect – Drain current Vs voltage derivation – channel length modulation – CMOS technologies, CMOS Fabrication: n-well – p-well – twin tub –DC transfer characteristics

UNIT II MOS CIRCUITS DESIGN PROCESS AND CMOS LOGIC GATES 12HOURS

MOS Layers, Stick Diagram, Layout Diagram, Propagation Delays, CMOS Static Logic Transmission Gate Logic, Tri-State Logic, Pass Transistor Logic, Dynamic CMOS Logic, Domino CMOS Logic, Differential Cascade Voltage Switch (DCVS) Logic, Scaling of MOS Circuits.

UNIT III VLSI IMPLEMENTATION STRATEGIES

12HOURS

Introduction – Design of Adders: carry look ahead-carry select-carry save. Design of multipliers: Array – Braun array – Baugh-Wooley Array. Introduction to FPGA – Full custom and Semi custom design, Standard cell design and cell libraries, FPGA building block architectures

UNIT IV CMOS TESTING

12HOURS

Need for testing- Testers, Text fixtures and test programs- Logic verification- Silicon debug principles-Manufacturing test – Design for testability – Boundary scan

UNIT V SPECIFICATION USING VERILOG HDL

12HOURS

Basic concepts- identifiers- gate primitives, gate delays, operators, timing controls, procedural assignments conditional statements, Data flow and RTL, structural gate levelswitch level modeling, Design hierarchies, Behavioral and RTL modeling, Test benches, Design of decoder, equality detector, comparator, priorityencoder, half adder, full adder, Ripple carry adder, D latch and D flip flop

Text book(s) and/or required materials

TEXT BOOKS

- T1. Weste and Harris: CMOS VLSI DESIGN (Third edition) Pearson Education, 2005
- T2. Uyemura J.P: Introduction to VLSI circuits and systems, Wiley 2002.

REFERENCES

- R1 D.A Pucknell & K.Eshraghian Basic VLSI Design, Third edition, PHI,2003
- R2 Wayne Wolf, Modern VLSI design, Pearson Education, 2003
- R3 M.J.S.Smith: Application specific integrated circuits, Pearson Education, 1997
- R4 J.Bhasker: Verilog HDL primer, BS publication, 2001
- R5 Ciletti Advanced Digital Design with the Verilog HDL, Prentice Hall of India, 2003
- R6. https://en.wikipedia.org/wiki/Very-large-scale_integration

Computer usage: To model a Combinational circuit and Sequential circuit using hardware description language Verilog HDL and validate its functionality.

Professional component

General - 0%
Basic Sciences - 0%
Engineering sciences & Technical arts - 0%
Professional subject - 100%

Broad area: Communication | Signal Processing | Electronics | VLSI | Embedded

Test Schedule

S. No.	Test	Tentative Date	Portions	Duration
1	Cycle Test-1	August 1 st Week	Session 1 to 18	2 Periods
2	Cycle Test-2	September 2 nd Week	Session 19 to 36	2 Periods
3	Model Test	October 2 nd Week	Session 1 to 60	3 Hrs
5	University Examination	ТВА	All sessions / Units	3 Hrs.

Mapping of Instructional Objectives with Program Outcome

Learn about the basic concepts for the circuit configuration for the design of linear integrated circuits and develops skill to solve engineering				
problems:	Н	М	L	
Identify the various IC fabrication methods.	h	f,g,i	-	
2. Express the Layout of simple MOS circuit using Lambda based design rules.	c,i,j	a,h	b	
3. About the implementation of various adders and multipliers in VLSI technology	d,j,k	a,h	-	
4. About the design styles of FPGA.	е	a,g,h	-	
5. About testing of CMOS circuits.	-	-	b,i	
6.To understand the concepts of modeling a digital system using Hardware Description Language.	a,e,f	k	-	

H: high correlation, M: medium correlation, L: low correlation

Draft Lecture

Session	Topics	Problem Solving (Yes/No)	Text / Chapter	
UNITI : INTRODU	JCTION TO MOS TRANSISTOR	•	•	
1,2	MOS Fabrication	No	R1-Chapter 1	
3	Enhancement mode and Depletion mode MOSFET	No	T1-Chapter 2	
4	Threshold voltage derivation	No		
5	Drain current Vs voltage derivation	No	1	
6	channel length modulation	No	1	
7	CMOS technologies	No		
8	n-Well Process	No	R1-Chapter 1	
9	p-well Process	No		
10	Twin tub Process	No	1	
11,12	Dc transfer characteristics	No	T1-Chapter 2	
UNIT II MOS CIR	CUITS DESIGN PROCESS AND CMOS LOGIC GA	TES		
13,14	Stick Diagram	No	R1-Chapter 3	
15,16	Layout Diagram	No	_	
17	Propagation Delays	No	T1-Chapter 6	
18	CMOS Static Logic	No	<u> </u>	
19	Transmission Gate Logic	No	1	
20	Tri-State Logic	No		
21	Pass Transistor Logic , Dynamic CMOS Logic	No	-	
22	Domino CMOS Logic,., Differential Cascade Voltage Switch (DCVS) Logic	No	-	
23,24	Scaling of MOS Circuits.	No	R1-Chapter 5	
JNIT III VLSI IMI	PLEMENTATION STRATEGIES			
25	Design of Adders: carry look ahead	No	R1-Chapter 8	
26	carry select and carry save adders	No	1	
27	Design of Array multipliers	No		
28	Braun array multiplier	No		
29	Baugh-Wooley Array	No	1	
30	Introduction to FPGA	No	R3 –Chapter 1	
31	Full custom and Semi custom design	No	· .	
32,33	Standard cell design and cell libraries	No		
34,35	FPGA building block architectures	No		
36	Summary and Quiz on Unit III	No		
JNITIV- CMOS T				
37,38	Need for testing	No	T1 -Chapter 12	
39	Testers, Text fixtures	No	1 '	
40	test programs	No	1	
41,42	Logic verification	No	1	
43	Silicon debug principles	No	1	

44	Manufacturing test	No	
45	Design for testability	No	
46,47	Boundary scan	No	
48	Summary and Quiz on Unit III	No	
UNIT-V- SPECIFICA	ATION USING VERILOG HDL		
49	Design Hierarchies	No	R4 Chapter 1,2,5
50	Basic concepts	No	
51	gate delays, operators, timing controls	No	
52,53	procedural assignments conditional	No	
	statements		
54	Data Flow Modeling	No	
55	Gate Level Modeling	No	
56	Switch Level Modeling	No	
57	Structural Level Modeling	No	
58,59,60	Design of combinational and Sequential	No	
	Logic circuits circuits in all types of modeling		

Teaching Strategies

The teaching in this course aims at establishing a good fundamental understanding of the areas covered using:

- Formal face-to-face lectures
- Tutorials which allow the students to gain knowledge in programming of Digital System logic using Verilog.
- Laboratory sessions, which support the formal lecture material and also develop the programming
- skill of the students
- Small periodic quizzes, to enable you to assess your understanding of the concepts.

Evaluation Strategies

 Cycle Test – I
 10%

 Cycle Test – II
 10%

 Model Test
 25%

 Attendance
 5%

 Final exam
 50%

Prepared by:	M.Jasmin, A	Assistant Professor	Department of ECE	Dated :	

Addendum

ABET Outcomes expected of graduates of B.Tech / ECE / program by the time that they graduate:

- a) an ability to apply knowledge of mathematics, science, and engineering fundamentals.
- b) an ability to identify, formulate, and solve engineering problems
- c) an ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability
- d)an ability to design and conduct experiments, as well as to analyze and interpret data
- e)an ability to use the techniques, skills, and modern engineering tools necessary for engineering practice
- f)an ability to apply reasoning informed by a knowledge of contemporary issues
- g)an ability to broaden the education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context
- h) an ability in understanding of professional and ethical responsibility and apply them in engineering practices
- i) an ability to function on multidisciplinary teams
- j) an ability to communicate effectively with the engineering community and with society at large
- k) an ability in understanding of the engineering and management principles and apply them in Project and finance management as a leader and a member in a team.

Program Educational Objectives

PEO1: PREPARATION:

To provide strong foundation in mathematical, scientific and engineering fundamentals necessary to analyze, formulate and solve engineering problems in the field of Electronics And Communication Engineering.

PEO2: CORE COMPETENCE:

To enhance the skills and experience in defining problems in Electronics And Communication Engineering design and implement, analyzing the experimental evaluations, and finally making appropriate decisions.

PEO3: PROFESSIONALISM:

To enhance their skills and embrace new Electronics And Communication Engineering Technologies through self-directed professional development and post-graduate training or education

PEO4: SKILL:

To provide training for developing soft skills such as proficiency in many languages, technical communication, verbal, logical, analytical, comprehension, team building, inter personal relationship, group discussion and leadership skill to become a better professional.

PEO5: ETHICS:

Apply the ethical and social aspects of modern communication technologies to the design, development, and usage of electronics engineering.

Course Teacher	Signature	
Ms M.Jasmin		

Course Coordinator Academic Coordinator	Professor In-Charge	HOD/ECE
---	---------------------	---------

(Ms.M.Jasmin) (Dr M.Sundararajan)